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We present a method for the rankwise distributed multipole analysis of an arbitrary distribution of charge
and its surrounding field. Using the superposition principle, the electrostatic field created by a distribution of
charge can be resolved recursively into the contributions of a set of intrinsic multipole moments “tied to” their
rank-specific multipole centers. The positions of the multipole centers, which are fixed with respect to the
distribution of charge, are determined from a term-by-term optimization of the Taylor’s expansion of the
electrostatic potential with respect to the charge coordinates. We describe the recursive construction of the
intrinsic multipole moments and derive the algebraic expression of the multipole centers. The resulting dis-
tributed multipole expansion provides a conceptual framework for the analysis and modeling of the electro-
static field and of its associated distribution of charge.
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I. INTRODUCTION

Multipole expansions are a central conceptual and com-
putational technique in the analysis of the electrostatic and,
more generally, of any potential field in terms of the spatial
distribution of its source. The importance of the method is
due in part to the relationship that it establishes between the
field “outside” the source and the macroscopic description of
the source of field provided by its set of multipole moments.
However, the method poses a number of limitations, from
both a conceptual and a practical point of view. Here, we
address some of these limitations.

The coefficients of the multipole expansion form the com-
ponents of the multipole moments of the spatial distribution
of charge. Except for the lowest-rank nonvanishing multi-
pole, all other moments depend on the center of expansion.
Therefore, the expansion is not uniquely defined, depending
instead on the expansion center. There is no general guiding
principle for choosing a “best” expansion center even
though, in practice, it is common to use the center of charge,
or the center of mass when the total charge is zero and the
center of charge is not defined. In this paper we propose a
multipole expansion that removes this ambiguity.

In principle, the center of expansion is not important in
the sense that, when the whole multipole series is retained,
the potential converges to the exact value, independent of the
location of the center of expansion. Moreover, in many prac-
tical applications of the multipole expansions, the field is
needed at large distances from the source of charge. In those
cases, a good approximation can be obtained by truncating
the multipole series to a relatively low number of terms, and
the location of the center of expansion is not of much impor-
tance. In other applications, however, the assumption of a
large distance from the observation point to the source is not
warranted. In these latter cases, the truncation errors may be
very sensitive to the location of the center of expansion, and
an optimization of the center of expansion is desirable so that

the rate of convergence is maximized within the retained
terms. Then, the reasonable question arises: how does the
error in this approximation of the potential depend on the
origin of expansion and, related to this, how can one mini-
mize this error? In part, addressing this question led to the
development of more specific methods for the use of the
multipolar expansions in various physical �for example, the
fast multipole method �FMM� �1�� and physical chemistry
applications �for example, the distributed multipole analysis
�DMA� �2,3��. We also address this question with the analy-
sis presented here. However, unlike previous methods that
are specifically tailored for certain types of applications, the
solution we propose is general, being based on intrinsic
properties of the multipole moments alone.

This second aspect is especially important for the appli-
cation of the multipole expansions to the development of
coarse grain analytical models for the nonisotropic interac-
tion between molecules �4,5�. This problem is of central im-
portance for the modeling of complex systems, such as those
in the biological sciences. While multipole-based models are
already in common use for small molecules such as water
�6,7�, their use for larger molecules has been hindered
mainly by the limited accuracy of truncated multipole expan-
sions in reproducing essential features of the field in the im-
mediate vicinity of a molecule �8,9�. The classical DMA
method �2,3� can address some of these limitations. How-
ever, since it requires adjusting parameters, such as the cen-
ters of expansion, to the chemistry of each molecule, it is not
easily generalizable. The alternative introduced here requires
only the knowledge of multipole moments. Therefore, unlike
DMA, which is designed for chemical systems, our method
can be applied to any physical system for which a set of
multipole moments is known.

Finally, while in most physical problems the relevance of
the multipole moments relates to their role in the approxi-
mate calculation of the field, in other problems the multipole
moments are also important as convenient descriptors of the
spatial distribution of the source of the field itself. This is the
case, for example, when multipole moments are used as
shape descriptors in nuclear physics, or as discriminants in*agramada@ucsd.edu
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the analysis of the spatial anisotropy of the cosmic micro-
wave background �10–12�, or for the purpose of comparison
of chemical structures with respect to various physicochemi-
cal properties �13,14�. In some of these applications, the am-
biguity of their meaning due to the lack of an objective
choice for the center of expansion may represent a significant
limitation. The analysis we propose here may also serve in
addressing this limitation.

The organization of the paper is as follows. In the next
section, we define in more quantitative terms the problem
that we seek to solve, and then propose a criterion of opti-
mization of the center of multipole expansion. In Sec. III A
we describe the recursive definition of the rankwise distrib-
uted multipole analysis �RWDMA� and in Sec. III B we de-
rive the expression for the multipole centers of arbitrary or-
ders. In Sec. IV we illustrate and discuss the performance of
our RWDMA method on a physical system of practical im-
portance. Section V concludes the paper.

II. OPTIMAL MULTIPOLE EXPANSION CENTERS

Consider, for simplicity, a discrete distribution of charges
�ei�i=1 , N located at positions �x�i�i=1 , N. In a standard deriva-
tion, the multipole expansion of the scalar potential outside a

sphere enclosing the charges and centered at a given point X�

can be obtained by expanding the Coulomb potential of each

charge in terms of its position with respect to the center X� ,
and then adding the resulting series term by term. In a final
step, the traces of the terms of each order can be removed,
without affecting the result, due to the Coulomb potential
satisfying the Laplace equation. The result is an asymptotic
series with respect to the relative position of the observation
point, and, at the same time, a Taylor series expansion with
respect to the set of N relative positions of the charge coor-
dinates. In a compact form, the series can be written as

��r�� =
1

4��0
�
l=0

� r�1
r�2

¯ r�l

r2l+1 M�1�2¯�l

�l� , �1�

where r�=x� −X� is the relative position of the observation
point and r is the length of vector r�. The indices �i denote
the three Cartesian components of a vector. In this form, the
power series character of the expansion is given by the co-
efficients M�1�2¯�l

�l� which are homogeneous polynomials of
degree l in the charge coordinates relative to the center of
expansion. They represent the components of the Cartesian
multipole moments, which are totally symmetric and trace-
less tensors of rank l over the three-dimensional space, and
are defined by �15�

M�l� = Tl�
�l�. �2�

The tensor ��l� is the totally symmetric tensor of the “un-
abridged” �15� charge moments

��1�2¯�l

�l� =
1

l!�i=1

N

eiri�1
ri�2

¯ ri�l
, �3�

and Tn is the detracer operator �15�

Tn��1¯�n

�n� = �
m=0

�n/2�

�− 1�m�2n − 2m − 1�!!

� �
P���

	�1�2
¯ 	�2m−1�2m

�
1
1
2
2¯
m
m�2m+1¯�n

�n� .

�4�

The �n /2� in the upper limit in Eq. �4� stands for the largest
integer smaller than n /2, �2k−1�!!=1�3� ¯ � �2k−1�,
and P��� indicates the sum over all permutations of the sym-
bols �1¯�n �15�. Here, and throughout the rest of the paper,
Einstein’s summation convention over repeated indices is
used to denote contractions with respect to Cartesian coordi-
nates.

Typically, in a multipole expansion we are concerned with
the dependence on the observation point relative to the ex-
pansion center. Since there is no objective a priori rule for
choosing the expansion center, let us focus our attention in-
stead on the dependence of the potential on the charge coor-
dinates in Eq. �1� for a fixed, large relative position vector r�
of the observation point. As stated earlier, Eq. �1� converges
as a power series in the three-dimensional position vectors of
all charges in the system. As with all power series, the accu-
racy of a partial sum of the series depends on how far from
the expansion point the charges are located: the “smaller” the
separation, the better the accuracy. As a trivial case, for a
single charge, one can choose the expansion point at the
position of the charge and then the zero order term provides
an exact value of the function. When the system has more
than one charge, this cannot be achieved simultaneously for
all coordinates, however, and improving the accuracy in this
way becomes an optimization problem with respect to the
position of the center of expansion. Moreover, in the single
charge case, minimization of the linear term of expansion
automatically insures the minimization of all higher orders.
This is not necessarily true for an arbitrary number of
charges.

In the case of a first-order expansion, the natural optimi-
zation criterion is the minimization of the magnitude of the
charge-weighted average of relative positions of the par-
ticles, i.e., the magnitude of the dipole moment. We recog-
nize here the condition that defines the center of charge, a
common choice for the center of the potential expansion of a
charged system.

The above linear case suggests a criterion for an arbitrary
term of the expansion: the minimization of the “magnitude”
of the corresponding multipole moment. The magnitude of a
given Cartesian multipole moment is the total contraction of
the moment with itself, as this is the only positive scalar that
can be defined from its components. For the rank l in the

expansion, we will therefore seek a center of expansion, X� ,
that satisfies the extreme condition

�X� �
�1¯�l

�M�1�2¯�l

�l� �2 = 0. �5�

We use the traceless rather than the unabridged moments
because they are the natural coefficients in the potential ex-
pansion �1�, and because they can be reduced to a minimum
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number of independent parameters. The gradient in Eq. �5� is
easily calculated by noticing first that the left side is equiva-
lent with ��2¯�l

M�1�2¯�l

�l� �X���1¯�l

�l� since the partial trace
terms in �4� do not make any contribution under the summa-
tion sign �the first multipole factor is traceless�. Then, the
partial derivatives of the unabridged moments are propor-
tional to moments of immediately lower rank. Finally, partial
trace terms can be added back liberally to reconstruct a trace-
less multipole tensor in the second factor. Equation �5� be-
comes then

�
�2¯�l

M�1�2¯�l

�l� M�2¯�l

�l−1� = 0, �1 = 1,2,3. �6�

Since a multipole moment of rank l is a polynomial of rank
l in the expansion center, Eq. �6� is a polynomial system of
three equations of degree 2l−1. The real solution of mini-
mum value for ��1¯�l

�M�1�2¯�l

�l� �2 provides the best expan-
sion point for the term of rank l.

Operating with the Cartesian form of high-rank multi-
poles is complex. In practice, it is often more convenient to
use their spherical harmonics representation, which has the
additional advantage of being nonredundant. The expansion
of the electrostatic potential in this basis set is �16�

��r�� =
1

�0
�
l=0

�

�
m=−l

l
1

2l + 1

ql
m

rl+1Yl
m�r̂� , �7�

where the unit vector r̂ is used as a short notation for the two
spherical angles � ,� that form the argument of the spherical
harmonic functions Ylm. The coefficients of the expansion are
the multipole moments and are defined by

qlm = �
i=1

N

eiri
lY

l

m*�r̂i� . �8�

There is a one-to-one correspondence between a multi-
pole set �ql

m�m=−l¯l and its traceless Cartesian counterpart
M�l�. The 2l+1 components �ql

m�m=−l¯l of a multipole mo-
ment of rank l form an irreducible tensorial set �17,18�. The
operation of contraction of the Cartesian multipoles is repre-
sented in this formalism by tensorial products. We will use
the notation �al�bm�n to denote a product of two irreducible
tensors al and bm of ranks l and m resulting in a tensor of
rank n �18�. The components of this latest tensor are given
by

�al � bm�n
k = �

ij

Cijk
lmnal

ibm
j , �9�

where k=−n , . . . ,n, and Cijk
lmn are Clebsch-Gordan coeffi-

cients �18�.
If we denote by ql the whole set of components of a

multipole of rank l, then its magnitude is 	ql	= ���ql
�ql�0��1/2. The condition of minimum in Eq. �5� is then
equivalent to the minimum of 	ql	2, and Eq. �6� becomes

�ql � ql−1�1 = 0. �10�

Since a rank-1 tensor has three components, the above result
provides three equations for the coordinates of the optimal
expansion center.

III. DISTRIBUTED MULTIPOLE EXPANSION

A. Recursive derivation of the expansion and intrinsic
multipole moments

Returning to the problem of optimizing the series expan-
sion of the electrostatic potential, we note two challenges
that arise. First, solving the minimization problem, in either
form �6� or �10�, may be difficult in practice due to the high
order of the polynomial equation. Second, there is an ambi-
guity with respect to which rank to minimize, since, in typi-
cal usage, all terms up to the truncation order are retained for
computational purposes. We show now that both inconve-
niences can be eliminated by a recursive use of the superpo-
sition principle.

The change of a multipole moment of a given rank under
translation is given by a polynomial function in the transla-
tion vector, the coefficients of which are multipole moments
of lower rank only. This is a textbook result �16� and can be
immediately established from the Cartesian definition of the
moments. In the particular case in which only the next lower-
rank multipole is nonzero �in which case the multipole is
also translation invariant�, the polynomial becomes linear
and Eqs. �6� and �10� reduce to linear systems of equations.

Let us assume now that, for our system, all multipoles of
rank lower than a given order n vanish. Then, the multipole
of rank n is translation invariant, and the multipole of rank
n+1 varies linearly with the position of the expansion point.
In other words, Eq. �10� becomes, as stated earlier, linear in
the coordinates of the center of expansion. Optimizing the
potential expansion by solving Eq. �10� with l=n+1 leads to
a unique center of expansion where the correction to the term
of rank n is minimal. Let us call this optimal expansion cen-

ter X� n and denote by Qn and �ql�l=n + 1 , � the multipole mo-
ments at the �arbitrary� initial origin of the reference frame.
As the origin is moved to the optimal expansion center, the
multipole Qn remains the same but multipoles starting at
rank n+1 change into �ql��l=n + 1 , �. The series expansion of

the potential field with respect to the center X� n is

��r�� =
1

�0

1

2n + 1 �
m=−n

n
Qn

m

rn
n+1Yn

m�r̂n� + Rn+1�r�� , �11�

where r�n=r�−X� n, and Rn+1�r�� is the series defined by trans-
lated multipole moments of order higher than n. Just as the

center of charge in a charged system, the centers X� n are fixed
with respect to the charge distribution, a property that can be
seen as a result of space homogeneity.

Intuitively, Eq. �11� can be interpreted as follows. Let us
imagine that we place a pair of elementary multipole mo-

ments at point X� n, one identical to Qn, and the other of op-
posite strength. In principle, an elementary moment of rank n
can be construed as a spherical shell with surface charge
distributed according to an appropriate combination of
spherical harmonic functions of order n �16�, so that the only
nonvanishing moments are those of rank n �10,19�. An op-
posite moment can be obtained by inverting the sign of the
charge, for example. Then, the combination of the original
distribution of charge and the two elementary multipole mo-
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ments can be partitioned into two systems: �1� a multipole
moment identical with Qn and �2� the set of original charges
plus the second elementary moment of strength opposite to
that of Qn. The set of multipole moments for this latter sys-
tem is indistinguishable from that of the original system of
charges, except for the cancellation of the moment of rank n
of the original system by the added elementary multipole.

The transformation described above is an extension of the
common process of partitioning of a distribution of charge in
a net point charge, located at the center of charge, and a
residual neutral system. Similar to that case, according to the
superposition principle the potential is the sum of the fields

created by the two systems. With respect to point X� n, the
potential of the first elementary multipole �identical to Qn� is
exactly represented by the first term in Eq. �11�. The second
system has a zero multipole of rank n and therefore its trans-
lated multipole moment of rank n+1, Qn+1=qn+1� , is transla-
tion invariant. It is also minimal as a result of the translation
to the optimal expansion point of Qn. We can now recur-
sively apply the same optimization procedure to this residual
system: its series will start with a rank n+1 and will be

centered as a point X� n+1 which corresponds to the minimum
magnitude of its multipole of rank n+2. Its multipole mo-
ments with respect to the new center will be obtained by the
translation of the moments ql�.

The recursion process can be continued in principle in-
definitely, and, at the end of the process, the expansion of the
potential acquires a new form

��r�� =
1

�0
�
l=n

�

�
m=−l

l
1

2l + 1

Ql
m

rl
l+1Yl

m�rl̂� . �12�

We name this the rankwise distributed multipole analysis. It
can be seen that, in this type of analysis, a distribution of
charge is more naturally described by pairs of the form

�Ql ,X� l� rather than just multipole moments alone. In other
words, the minimal multipole moments Ql are “tied” rather
than “free” quantities, for the purpose of potential calcula-
tion. The associated center of multipole Ql is rigidly tied to
the distribution of charge and, therefore, is defined in a way
independent of the location of a reference frame. This prop-
erty is similar to the translation invariance of the net charge
and, in general, to the translation invariance of the lowest-
rank nonvanishing multipole moment. For this reason, we
propose to name these moments the intrinsic multipole mo-
ments of the distribution of charge.

The vectors X� l defining the multipole centers are a gener-
alization to higher-rank multipoles of the notion of center of
charge. The concept was introduced before in a different
context �13�, as a way to define the origin of a body-tied
reference frame, for the purpose of comparing two molecules
with respect to their electrostatic field. For the comparison to
be meaningful, the molecules must be placed in an equiva-
lent position where the descriptors �in this case the multipole
moments� are calculated. Naturally, for charged systems, the
molecules are placed so that the center of charge represents
the origin of the system of coordinates. However, for neutral
molecules, the center of charge is not defined. As a substi-

tute, in �13� a dipole center is defined from a condition that is
quantitatively equivalent to our criterion, i.e., the minimiza-
tion of the quadrupole moment. The authors then propose the
generalization to higher orders to allow for the comparison
of molecules with vanishing multipoles of rank lower than
any arbitrary given rank.

We presented above the recursive process of determining
the intrinsic multipole moments from initial moments rela-
tive to an arbitrary origin. The opposite process is just a
reversal of this: the relative position of consecutive centers
can be used to translate the multipole moments, step by step,
starting with their intrinsic value and transforming them to-
ward their one-center form.

As an important remark, RWDMA only requires the
knowledge of the multipole moments with respect to a given
center. Of course, the determination of the single-center mo-
ments requires the knowledge of the charges and their coor-
dinates, but, once they are determined, the RWDMA can be
performed without any further use of that information; the
underlying distribution of charge, and therefore the nature of
the system, is no longer relevant. From a practical stand-
point, if charges are given, the calculation of the multipole
moments from charges and their positions is only required
once, at the beginning of the analysis. For any subsequent
step of the analysis, the moments can be calculated with
standard methods for the multipole translation, which are
well studied due to their special role in the FMM �1,20,21�.

B. Derivation of the expansion centers

While the equation and an expression for the dipole center
of a neutral system have been derived in �13�, we are not
aware of similar results for arbitrary multipole centers. We
complete now our analysis by deriving expressions for the
center of an arbitrary multipole.

Starting from Eq. �10� and the assumption that all multi-
poles of rank lower than l−1 vanish, we use Eq. �2.41� in
Ref. �21� to describe the transformation of the multipole ql
under a translation of vector �x ,y ,z�. Equation �10� can then
be reduced to

ā� + b�̄ � A2�1
� = �ql � ql−1�1

�, �13�

where ̄�1= � �x� iy� /
2, and ̄0=z are the conjugate irre-
ducible components of the translation vector and the quanti-
ties a, b, and A2 are defined by

a =
2l + 1

3


 l

2l − 1
�ql−1 � ql−1�0

0, �14�

b = ��2l − 3��l − 1��2l + 1�/6�2l − 1��1/2, �15�

A2 = �ql−1 � ql−1�2. �16�

Since Eq. �13� form a linear system, the solution can be

obtained from Cramer’s rule, i.e., ̄�=�� /�, where the two
determinants are
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�� = �a2 −
b2

2
5
	A2	2��ql � ql−1�1

� − ab�A2 � �ql � ql−1�1�1
�

+
b2
7

2
5
†�A2 � A2�2 � �ql � ql−1�1‡1

�, �17�

� = a3 −
3ab2

2
5
	A2	2 +

b3
7

10
†�A2 � A2�2 � A2‡0

0. �18�

Note that the vectors ̄� denote relative positions of con-
secutive centers. To apply this solution to RWDMA, we need
to substitute for ql−1 the translation invariant moment of the
recursion step �intrinsic multipole�, and for ql the value of
the next-rank tensor. Then, the solution gives the relative
position of the center of the multipole of rank l−1 with re-
spect to the position at which ql �nonintrinsic value� is given.

Finally, the multipole centers X� l are obtained by recursively
summing these relative positions.

Since the above solution for the multipole centers results
from a linear system of equations, the multipole centers are,
in general, uniquely defined. Exceptions occur when the de-
terminant of the system �13�, given by Eq. �18�, vanishes.
One obvious case is when the multipole moment ql−1 is zero.
This is the case, for example, of the charge for a neutral
system and of higher-order multipole moments of symmetri-
cal molecules �22�. These cases admit a simple solution: the
vanishing multipole moment is skipped and the recursion is
resumed with the next rank multipole moment. There is also,
at least in principle, the possibility that the determinant ac-
cidentally vanishes, even for a nonzero multipole moment,
due to peculiarities of the tensor products involved in Eq.
�18�. Since the general analysis of this case is more complex
due to the presence of these high-rank tensor products, we
defer it for future work.

IV. ILLUSTRATION OF THE METHOD

The multipole expansion of RWDMA, Eq. �12�, con-
verges to the exact potential by virtue of its derivation, and
therefore no further proof is needed. Regarding its accuracy,
further studies are needed to establish general, rigorous esti-
mations. With this in mind, here we only illustrate its con-
vergence, relative to the regular expansion, on a simple ex-
ample: the multipole expansion of the electrostatic field

around a big biological molecule, a nucleosome protein core,
Protein Data Bank ID 1kx3 �23�.

The choice of the above molecule was motivated by our
interest in the system and availability of the data but other-
wise no particular test criteria were used. Table I shows the
accuracy of RWDMA in comparison to the regular expansion
about the center of charge. As a measure of the accuracy we
use the root mean square deviation �RMSD� from the exact
potential field given by Coulomb’s law. The calculation was
done on a rectangular grid with the characteristics as re-
ported in the table. We only compared the fields at the grid
points in the immediate vicinity of the molecule, but in the
region of convergence �see caption�, which represent the
most challenging region for multipole expansions. As can be
seen, there is no difference for truncation at the dipole order
since both expansions start at the center of charge and the
minimum dipole moment is null. However, the RWDMA
converges faster at low truncation orders. For example the
RMSD in the quadrupole order is about 26% smaller by
comparison with the conventional expansion. The two meth-
ods produce indistinguishable results as they both approach
the same, exact values, with further addition of higher order
terms.

To further illustrate the convergence properties of our
multipole expansion, in Fig. 1 we show a comparative view
of an electrostatic potential isosurface as generated by the
exact Coulomb calculation �a� as well as the RWDMA �b�
and regular multipole expansion �c�. Note that, unlike the
data in Table I, the isosurface is not strictly speaking entirely
“outside” the distribution of charge. Therefore, in regions of
the isosurface located “inside” the molecule, the multipole
expansion is not necessarily an accurate representation of the
potential for two reasons: first, the solid spherical harmonic
functions do not form a complete set for all points on the

TABLE I. RMSD �arbitrary units� between the potential field calculated by either the one-center multipole
expansion about the center of charge �first row� or RWDMA �second row�, and the exact field calculated from
Coulomb’s law. The grid is a 32�36�36 rectangular mesh with an approximate spacing of 4 Å between
points in each of the three spatial dimensions. Only grid points located outside the reunion of spheres
centered at the multipole centers, and tightly enclosing all charges, were included in the calculation �20 482
out of a total of 41 472 grid points overall�.

Method

Rank

1 2 3 4 5 6 7

Center of charge 4.001 1.903 1.234 0.584 0.331 0.230 0.172

RWDMA 4.001 1.415 1.195 0.508 0.324 0.240 0.171

FIG. 1. The same isosurface of the electric potential calculated
from the Coulomb law �a�, RWDMA expansion �b�, and regular
multipole expansion with respect to the center of charge �c�. The
series are truncated in the quadrupole order in both �b� and �c�.
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surface and, second, the multipole coefficients themselves
are not accurate, which makes the multipole expansion an
asymptotic rather than a convergent series. We chose, how-
ever, such a surface so that we could capture nontrivial fea-
tures that allow us to more easily discriminate between the
practical capabilities of the classical and RWDMA methods.
In both Figs. 1�b� and 1�c� the truncation of the series is in
the quadrupole order. It is clear that RWDMA captures the
“thinning” of the isosurface in the front region as displayed
by the exact Coulomb calculation, while the regular expan-
sion produces only a circularly symmetric shape. In order to
capture the same feature, a classical multipole expansion
would clearly need to go beyond the quadrupole level. The
better convergence at lower truncation orders provide an ad-
vantage for both analytical modeling and numerical compu-
tation due to the simplicity of the energy terms and, also, to
the better numerical stability in the computation of the
spherical harmonics functions of lower orders.

The intrinsic multipole moments are also useful from a
conceptual point of view, since they provide an objective
description of the charge distribution, due to their indepen-
dence from the choice of the system of coordinates. The
minimization conditions Eqs. �6� and �10� impose an addi-
tional constraint which effectively reduces the number of pa-
rameters required to describe an intrinsic multipole to the
minimum possible. For a quadrupole moment, for example,
only one parameter is needed �13,24�. In an implicit way,
these properties motivated the use of the intrinsic quadrupole
moment as an essential methodological tool in a recent com-
parative analysis of the importance of quadrupole moment
for correctly describing the water phase diagram in various
analytical models �25�.

V. CONCLUSION

In this paper we introduce a multipole description, the
RWDMA, for the analysis of a distribution of charge and its
surrounding field. In a concise description, the derivation of
this form of multipole expansion can be seen as the result of

combining two distinct steps, repeated recursively ad infini-
tum on the remainder of a regular Taylor’s expansion:

�1� Selection of the optimal expansion center from the
minimization of the magnitude of the second significant mul-
tipole moment.

�2� Partition of the remaining distribution of charge into a
distribution modeled exactly by the first significant multipole
moment, centered at the optimal center obtained in step 1,
and a charge distribution described exclusively by multipole
moments of higher order.

From a conceptual point of view, the RWDMA provides a
consistent definition of intrinsic multipole moments of arbi-
trary orders, a concept that until now was only possible for
the lowest nonvanishing multipoles of a distribution of
charge.

From a computational standpoint, this method may pro-
vide an improved convergence of the potential field expan-
sion, of importance for both analytical and numerical mod-
eling. As an important remark in this context, unlike other
improved schemes for multipole representation of the elec-
trostatic field �2,3�, RWDMA does not require any prior
knowledge about the nature of the physical system. In fact,
the only imput required is the set of multipole moments with
respect to an arbitrary origin.

Note that the analysis we describe is also generalizable
from a mathematical standpoint, since it relies on properties
of multivariate Taylor’s expansions and on the linearity of
the Poisson equation satisfied by the electrostatic potential,
which is the basis of the superposition principle. As such, the
analysis can be expanded to a wider range of problems de-
scribed by a similar mathematical framework. In particular,
the results can be extended to other potential fields, for ex-
ample, the gravitational field.
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